Archive Retrieval Server Level 1 design

From Intranet

This is the second Archive Retrieval Server API design draft. It follows the initial design draft (ADIC Level O design). This design
incorporates user input regarding the Stornext (formerly called "ADIC") system capabilities desired to serve their needs.

This design will begin by identifying categories of users, then list use cases and then from that derive a list of requirements. This
should provide a good outline that will improve with user input.

Contents

= 1 User Categories
m 2 Use Cases
= 2.1 1. External Web User Shopping Cart
= 2.1.1 File directory page
= 2.1.2 Cart page
= 2.1.3 Order page
= 2.1.4 Status/Pickup page
= 2.1.5 Order complete email
= 2.2 2. Internal User Shopping Cart
= 2.3 3. Monitoring
s 2.3.1 3.1 Technical Monitoring
= 2.3.2 3.2 Supervisory Monitoring
= 2.4 4. Internal Program API
= 2.4.1 Specific User Input
= 3 Requirements
= 3.1 NEAAT Compatibility
= 4 Design
= 4.1 Hardware Layout
= 4.2 Software Levels
= 4.3 Functionality Outline
= 4.3.1 Upper Level Capabilities (Shopping Cart)
= 4.3.1.1 Shopping Cart research
= 4.3.2 Middle Level Functions (Retrieval Server)
= 4.3.2.1 User Functions
= 4.3.2.1.1 String[] Browse.list(String dirPath, [int jobId])
= 4.3.2.1.2 int Browse.listCount(String dirPath)
= 4.3.2.1.3 String[] getCart(int jobld)
» 4.3.2.1.4 int Order.addToCart(int jobId, String[] fileList)
= 4.3.2.1.5 int Order.addToCart(int jobId, String dirPath, String fileRegEx)
= 4.3.2.1.6 String Order.validateFullOrder(String email, boolean notifyFlag, int acceptanceCode,
String name, String orderType, String[] fileList)
= 4.3.2.1.7 int Order.fullOrder(String email, boolean notifyFlag, int acceptanceCode, String
name, String orderType, String[] fileList)
» 4.3.2.1.8 int newCart()
» 4.3.2.1.9 removeFromCart(String[] File, int jobId)
= 4.3.2.1.10 clearCart(int jobld)

= 4.3.2.1.11 setContactInfo(String email, String name, int jobld)

= 4.3.2.1.12 int sendConfirmationEmail(int jobld, String url)
= 4.3.2.1.13 checkout(int jobld)

= 4.3.2.1.14 int confirmEmail(int jobCode)

= 4.3.2.1.15 String[] getJobs(int userld)

= 4.3.2.1.16 String[] getJobFileState(int jobId)

= 4.3.2.1.17 String getJobState(jobld)

= 4.3.2.1.18 int getJobPriority(int jobId)

= 4.3.2.1.19 String[] dirList(String dirPath, String regex)

= 4.3.2.1.20 int dirListCount(String dirPath, String regex)

= 4.3.2.1.21 startRetrieval(String destDir, int jobNo, int priority)

= 4.3.2.1.22 cancelOrder(int jobld)
= 4.3.2.1.23 getDiskFile(String filename)
= 4.3.2.1.24 preloadFiles(String dirPath, String fileRegEx)
= 4.3.2.2 Administrative Functions
= 4.3.2.2.1 String[] listJobs(bool internalUser, status filter)
» 4.3.2.2.2 String[] partitionFreeSpace()
m 4.3.2.2.3 bool setJobPriority(int jobld, int newPriority)
= 4.3.2.2.4 bool setRunStop(string "run" or "stop")
4.3.3 Lower Level Functions (Archive Server)
= 4.3.3.1 String archiveStatus()
= 4.3.3.2 struct fileStatus(String filePath) -- Version 2

» 4.4 Security Issues
= 4.5 Optimizations

4.5.1 Segment Big Orders

4.5.2 Aggregate Small Orders

4.5.3 Lower Priority on Subsequent Orders
4.5.4 Reshuffling requests by Tape

4.5.5 Let the Stornext optimize retrievals

= 4.6 Database Tables

4.6.1 files table
= 4.6.1.1 File Metadata columns
4.6.2 dirs table
4.6.3 active_jobs table
4.6.4 JobRecord table
4.6.5 status table
= 4.6.5.1 Job Status States
4.6.6 priority table
4.6.7 contact table
4.6.8 next_jobs table
4.6.9 provider table
4.6.10 retrieval table
4.6.11 retrieval _and_file table
4.6.12 delivery_partition table
4.6.13 clean_up_policy table
= 4.6.13.1 clean_up_policy Values
4.6.14 system_params table
4.6.15 retrieval_stats table

= 4.7 Flowcharts

4.7.1 Archive Retrieval Service Architecture
= 4.7.1.1 Software Components
= 4.7.1.1.1 Retrieval Server (archiveRetrievalServer)
= 4.7.1.1.2 Order Manager (archiveOrderManager)
= 4.7.1.1.3 Delivery Processor (archiveDeliveryProcessor)

= 4.7.1.1.4 Administrator (archiveRs Admin)
» 4.7.1.1.5 Job Status/Pickup (arsStatus)
= 4.7.1.2 Order Manager Description
= 4.7.1.3 Delivery Processor Description
= 4.7.2 Shopping Cart Function
= 5 Next Actions
= 5.1 Ken
= 5.2 Tom
= 5.3 Dan
= 6 See Also

User Categories

Identify the players the Retrieval Server API software will serve

End Users
Most users will come in over the Web. These users will be seeking data for scientific uses, but their background will vary
widely both technically and scientifically. The interaction they have will be with the interfaces designed by the data managers,
who will provide domain specific background information and search capabilities. A shopping cart type of data ordering
system is expected to meet most needs. A handful of internal users will also be served, and will require higher privileges.

External Users

standard interactions over the web

large orders over a set threshold will invoke data manager intervention
Internal Users (Data managers)

heightened access

ability to create larger datasets

additional data delivery options, including destination location for files

Data Managers
Internal administrators at NGDC will need a set of capabilities to serve End Users. They will use the Archive Retrieval
Server API or direct a programmer to create an interface for Web End Users. Data managers will want to see the status of
their datasets, orders requested and delivered, and summary statistics. They can also control orders for external users, such
as altering the priority.

Administrative monitors
Administrative monitors can be system administration personnel that want to track load on the system, as well as NGDC
management that will want to know the types and amount of data being delivered as well as summary statistics about the
users and system load.

Use Cases
Enumerate some scenarios of usage that the Archive Retrieval Server API should serve

1. External Web User Shopping Cart

A web user is visiting a domain specific page (probably an NGDC page) and would like to access data that are hosted on the
Storenext system. A common and familiar shopping cart set of pages will allow the user to select and then download data files.

File directory page

The web user follows a link that shows a directory listing, the starting directory is appropriate to the domain specific page they

started with. This listing may be similar to an operating system directory listing, showing information like file sizes and last
modification dates, or a cleaned up and filtered list that leaves out dates or some types of files. Along with the directory listing a
shopping cart link/button is provided. There may be sub-directories that the user can navigate into and out of. Files that are
selectable will have a check box next to each. An "Add to Cart" check box will be provided to add selected files to the shopping
cart. Ttems already in the cart will have a "Remove from Cart" check box.

Cart page

Choosing the shopping cart link, the user will see a cart contents page, showing the selected data files, with perhaps a total
download size summary. Check boxes and other controls will be provided so the user can remove some or all of the files from the
cart. An "Order" button will be provided to begin the process of gathering the files and packaging them for download.

Order page

After clicking the "Order" button, the user will be presented with an instruction page allowing them to back up to a previous page to
continue "shopping" or proceed with the order. This page includes a form to accept an email address to notify the user when their
order is complete. Many orders will be large enough that the user will not want to keep their browser window open to the
download system until the order processing is ready for pickup. A "continue" with order button is provided to store the email
address provided and continue on to an order status page. An order confirmation email will be sent; the user must click the link in
this email which contains a unique number in the URL to verify that the email address entered is a working address. The URL given
leads to the status page. If the email is not verified in 24 hours, the order is canceled.

We will require orders to have an email address. The system will be more resistant to abuse if an address is verified before any
work is done.

Status/Pickup page

The order status page will provide information on the current state of the order [a future version may also provide a listing of the
files ordered and a status on each (on disk or on tape)]. Once all files are on disk they will be combined into an archive (tar file).
The Stornext contents are already compressed, so a compression step is not needed. The status page then serves as a pickup page,
with a link to the deliverable tar file. A notice that the order is ready for pickup will be sent to the email provided when the
deliverable is ready. If this page is visited after the deliverable has been deleted, this page should note that this has happened. A link
can be provided to re-create this deliverable without the user having to remember and rebuild the order from scratch.

In rare cases, a shortage of resources, mainly working disk space, may prevent this order from proceeding, in which case this status
page will note that the order is waiting for resources. Additional status about the system itself may be nice, noting if the Archive
Retrieval Server retrieval is paused for error/maintenance, and how many jobs are queued ahead of the current order.

Some additional controls are provided:

= A link/button to cancel this order (immediately frees up disk space used so far)

= Once the order is complete, and the user has successfully downloaded the deliverable, there is a "Finished" link the user can
click to indicate they are finished (allowing the system to immediately delete the deliverable and free up resources)

= links to other orders this user has placed. If this order is waiting for disk space, then this provides a convenient way for the
user to access the status pages of other orders which they no longer need--on those pages they can then use the "Finished"
link to free up resources, and possibly bring their current order closer to completion.

Order complete email

The order complete notification email contains a link back to the order status/pickup page described above. The notice contains the
size of the deliverable, and notes a time limit the user has to pick up their order before it is automatically deleted to free disk space
for other users (it "ages out"). Besides the link to the status/pickup page, this notice should include:

= A link to begin another order

= A link to the domain specific page

= Additional instructions or metadata relevant to the data downloaded

= A link to mark their order as "Finished", releasing disk space before it "ages out" on its own. This is the same as the
"Finished" button on the status/pickup page.

2. Internal User Shopping Cart

An internal user, like a data manager, could also prepare data collections using the shopping cart interface. This would also be a
web based interaction, using the same software described for use case 1. However, there will be some additional features available
to an internal user:

= A login to identify them as a privileged user or a different application URL only accessible to NGDC.

= An option to choose delivery to one of their NFS mounted file partitions (usually NetApp), these should be set up in advance
so that the location can be selected from a menu

= A separate workspace to accommodate larger orders than available to the external web users.

= An option to skip archiving the order into a single tar file

= An option to only move data from tape to Stornext disk buffer

= An option to set the order priority as higher or lower than the typical order

= Access to sensitive data (nonpublic)

3. Monitoring

There are two types of administrators, technical system administrators that will want to know performance and load measurements
helpful in maintaining the Stornext access system, and NGDC supervisory administrators (senior staff, data managers) that would
like to know how much data are being delivered out of the Stornext system. Note that this system does not handle or record data
being written into the Stornext storage area, only information read out.

3.1 Technical Monitoring

Those users who maintain the Stornext access system will want to know

= Total data volume moved
= Metrics on time needed, to judge system load
= binning by hour of day could be helpful
= percentage of hits on disk cache vs. tape access
= internal vs. external (web) originated requests
= disk space utilization
= distribution of job priority
= archive database table sizes
= job database table sizes
= size of contacts table
= jobs in queue (waiting)
= jobs processing
= current job queue
= number of jobs delivered (since timestamp, last hour|day|week|month, by hour of day|day of week)
= download objects on disk (#/% waiting for delivery and total)
= average order size
= cancelled order count
= system state (run or pause)
= error report, type, number of occurrences, last date of each type
= NFS delivery partition list and sizes

An administration mode (login required) allows orders to be held, deleted, have priority or delivery destination changed. An
administrator may also change the state between run and pause, and re-order the queue.

3.2 Supervisory Monitoring

It is expected that Data managers and Senior Staff at NGDC will also be interested in some of the information above, probably in a
more executive summary format. Note that information about the categories of data (MGG, STP, Hazards, etc.) and the domains
of external users initiating requests is not tracked by this system since that should be adequately handled by the Web server logs
and the log analysis software already in place at NGDC.

4. Internal Program API

Software applications (programs internal to NGDC) that need to access the Stornext will also use the API provided to the
shopping cart. This will provide similar functionality but in a format more appropriate to automated interaction. If there is additional
functionality, use cases for that can be added here.

Specific User Input

I think it will be useful to group automated access notes by data manager. Other data managers can be added as well, I know not
all of them are on this list, but these are people that have been recommended as likely to have input on program API functionality.
Notes and edits can also be made to other sections, so don't feel restricted to this portion of the page.

= FEric Kihn (DMSP)
= The basic functionality provided by the system FSL is using would likely meet Eric's needs.
= Will likely use his current shopping cart application modified to use the new API
= Would like to have streaming/caching files. We can implement a function to preload the Stornext buffer disk by
requesting files that will be used but the user isn't ready for.
= Dan Wilkinson (GOES/POES)
= will meet to discuss the retrieval system after AGU
= Dave Fischman (MultbeamyNOS)
= Willit be able to pull out files within a tarball or the entire tarball be downloaded?
= A:No, we don't plan to do this, we will be delivering what is archived in the Stornext. Our API will allow users
to perform these types of actions on their own. So it is a good idea to load the Stornext with tarballs of the size
you think are useful for retrieval.
= Will we be able to pass it requests from our existing websites?
= A:Requests from the existing websites will need to be modified to include an email address for later notification
in the case that files are not immediately available on disk. Some of the order processing software that already
does this won't look different to the user, but the software will need to be modified to use the new API.
= Fran Coloma (GPS CORS)
= A flag to mark sensitive data that should not be displayed to the public is important.

Thanks Ken, I'm looking forward to seeing the API. Some questions...

1. Will there be metrics to watch for "popular” datasets, and will there be a process to keep these datasets in a "data
pool" so that the tape drive isn't hit repeatedly with similar requests?
= A:The web logs should provide information on what is popular for data managers. On the delivery side, the
disk buffer for the Stornext is expected to keep items that are popular on hand for quick delivery. The most
recently used items are kept on disk, and the Stornext's internal disk is relatively large, so popular files will
always be present unless an extremely large request has been pulled out more recently.
2. Is the process smart enough to recognize that a requested file may be in the Disk Buffer or the Retrieval Server instead
of hitting the tape drive again?
= A:Yes, the jobs database will know which files are on the Retrieval Server disk. The Stornext automatically
looks for files on it's disk before going to the tape library.
= Rob Redmon (Ionosonde)
= The current holdings of ionosonde data are around 2 TB, in 30-50,000 station days of data, archived and compressed
by day. In the future the amount of data is expected to grow exponentially, perhaps 3 times more frequent and 100
times in size.

= Programming interfaces are of the most interest to Rob, having an API that makes data access easy to perform by a

script would be nice. (ruby)
= Dan Metzger (Trackline)

= A shopping cart that presents choices similar to a directory listing would be similar to what is being presented now for
MGG data users.

= There are README files in the system hierarchy that help a user decipher the filename meanings. It would be nice to
have the content of these available during navigation of the directories. It may be possible to have an an excerpt of
these (up to 2000 chars would capture most in their entirety) in the files database.

Requirements

Either directly specified or derived from the Use Cases, list the functionality the Archive Retrieval Server API software must fulfill

= Version 2 will provide an example shopping cart application with a file system type browser.
» Basic facilities to accept filenames, email address and ordering parameters including
= notify user when job is complete. An email notification may not be desired if a program is submitting orders
= specify desired action for orders deemed too big
= priority option for internal users
= URL to start over on the browse process
= name to describe order (optional)
= Process orders serially
= Use a shared database table to coordinate with archive software
= Manage disk space for delivery of products
= Keep a history of Jobs
= Possibly be compatible with the NEAAT (CLASS NOAA Enterprise Archive Access Tool)

NEAAT Compatibility

There are some simiarities in purpose between this software and NEAAT. It would be good to provide compatiblity between the
Archive Retrieval Server software and NEAAT, to minimize the effort that archive access developers need to expend to switch
over from the NGDC archive to NEAAT/CLASS archives.

NEAAT has a higher level of functionality that the Retrieval Server software does not attempt to addresss. Some of the functionality
that NEAAT provides that is not in the Retrieval Server plans include:

Metadata storage and management by data providers

= Service registration and management by service providers
Data selection by time window and spatial location

Web Application for data providers to manage their holdings
Web Portal for Client developers

Design

Hardware Layout

WWWI/FTP
Delivery Server

Stornext Retrieval Server

Internal Public (Public access)
Delivery Delivery

Area Area

short term assembly of

storage deliverables

Disk Buffer

120 TB

Internal Destination

(Data Manager access)

Four main computers are involved. The Stornext System runs on its own hardware. A separate Retrieval Server will draw data
over the network. Once deliverable packages of data are ready, they will be moved onto the public WWW/FTP Server for
delivery or another Internal Destination. Not shown here are databases to track Archive inventory (Archive DB) and orders
(ARS DB). Sizes in this section are subject to adjustment based on actual usage needs.

The Stornext System has a disk buffer for managing files retrieved from tape. The management of this cache is under control of
the Stornext software and is not accessible to the access software in this design.

On the Retrieval Server, there are two disk buffers, a 4 TB area for internal users, and a 1 TB work area for collecting files to
fulfill a data order for an external customer. (This should probably be a soft boundary of 4 and 1 TB, maybe the server
parameters/administration interface can set upper limits.) The collected files will be combined with an archive utility like tar,
consequently deliverables up to half the size of this area, 500 GB, can be created. For external users, once the order is ready, it
needs to be copied off the Retrieval Server Public Work Area out to another system (WWW/FTP Delivery Server), allowing the
disk area to be cleared for processing the next order. Internal users can leave their files on the Internal Work Area for short term
operations such as un-tar and un-compress, but should free space promptly when done.

Disk space on the WWW/FTP Delivery Server will be managed by standard file watch and cleanup software, usually clearing
files older than a certain age if not deleted explicitly before then.

It is expected that internal users will often want files delivered directly to an Internal Destination, which is configured into the jobs
database (see the delivery_partition table). Besides the Internal Work Area, any NFS mounted disk can be configured to receive
data. A parameter to preserve some free space on each destination can be configured in case the system owner doesn't want to
make the full capacity available to the Retrieval Server. This fourth box in the diagram represents a category of machines rather than
a single system, and can be network attached storage or an NFS capable server.

Software Levels

Three levels of software layers are planned for the Archive Retrieval Server API. At the top are interfaces that the users will use
directly, such as a web accessible browse and shopping cart system. The middle layer will manage remote and logical file access,
providing a published API for other developers to create other top level data access programs. The middle layer will also manage
the orders and their status, using a database to store this information. The bottom layer API will only be exposed to the middle
layer, and will represent local and physical access type methods.

The interface to the middle layer will be REST, allowing network access through HTTP.
Functionality Outline

Grouped by software levels, here is the functionality to be provided in pseudo-code like entries.
Upper Level Capabilities (Shopping Cart)

The browsing features will be in version 2 of the retrieval software. For version 1 just order support will be
implemented.

These are capabilities that end users will see and interact with. Web server applications will provide these services and will use the
middle level API to see and retrieve data.

View Directory
Show a directory of files, like the unix 'Is' command. If a directory location is omitted, then show the root level of the storage
system. The user can then navigate into and out of subdirectories as well as select file entries to be added to a shopping cart.
Show Cart
See the contents of the shopping cart, this is a list of items selected for download. These can be removed if unwanted.
Heuristic, put the most recently added item on top, allow viewing with other sort orders as well.
Add File(s) to the Cart
Add the selected file(s) to the cart
Remove File(s) from the Cart
Remove the selected file(s) from the cart
Clear Cart
Remove all the cart contents
Set Contact Info
Store email address and an optional name for this user. This email address will receive the notification that the data are ready
for pickup.
Checkout
User indicates that data selections are done. Add order to queue for processing
Show Jobs
Display a status page showing the state of this user's order(s)
Login/logout
Access control for privileged users
Cancel Order
Allow user to cancel their order
Immediate file retrieval
If the file is on disk, return the file, if not, an error is returned (this does NOT initiate a retrieval from tape). Can be accessed
as a REST URL.

Shopping Cart research

See Shopping Cart Research

Middle Level Functions (Retrieval Server)
These are functions provided to the Upper level to support the listed Upper level capabilities. These functions interact with the Jobs
DB to track and provide information on data requests. There are two categories of Middle Level functions, those functions that

support external and internal users, and those that serve system administration.

User Functions

These functions support browsing and ordering.
String[] Browse.list(String dirPath, [int jobId])

Get a list of files from a directory, like the unix 'ls' command. If 'dirPath’ is omitted, then start at the root level. If a jobId is
provided, then items already in the shopping cart can be marked.

int Browse.listCount(String dirPath)
Get a count of the files and directories inside the given 'dirPath’ (same as the length of the listing).
String[] getCart(int jobld)

See the contents of the shopping cart, this is a list of items selected for download. These can be removed if unwanted. Heuristic, put
the most recently added item on top, allow viewing with other sort orders as well.

int Order.addToCart(int jobld, String[] fileList)
Add the selected file(s) to the cart, if this is a new cart, jobId should be null, and a new jobId will be created.
int Order.addToCart(int jobld, String dirPath, String fileRegEx)

Add files to the cart using a regular expression to match filenames, if this is a new cart, jobId should be null, and a new jobId will be
created.

String Order.validateFullOrder(String email, boolean notifyFlag, int acceptanceCode, String name, String orderType, String][] fileList)

Can be called before calling Order.fullOrder with the same arguments to verify the order is valid. Returns a string "ok" for
acceptable orders or an error message if an order will be rejected. The error messages indicate why the order would be invalid:

= FError: invalid email address syntax

= FError: unknown acceptance code

= FError: empty file list

= FError: invalid filenames in file list, file names: file1, file2, up to file10 (ends in "..." if list is incomplete)
= FError: filenames not in archive inventory: file1, file2, up to file10 (ends in "..." if list is incomplete)

= FError: order is too large (for orderType)

int Order.fullOrder(String email, boolean notifyFlag, int acceptanceCode, String name, String orderType, String[] fileList)

Add the selected file(s) to the cart and checkout all in one step. All information needed for a complete order will be included in this
method call. The arguments are:

email
Email address for notifications, normally for job status
notifyFlag
Suppress email to the email address, allows emails to be suppressed for orders initiated by a program
acceptanceCode
Normally all valid jobs are accepted, but those that are too large are kept in a 'held' status so as not to overload the system.
An administrator can review the held jobs. Acceptance codes other than '0' indicate special handling:

= 0 - Normal processing, this code should be used by default. Valid jobs are set to "paused" if too large.
= 1 - Reject rather than accept a job that is too large. Can be useful for automated processing to avoid filling the job
queue with held jobs.

= 2 - Accept any valid job, but set its "Paused" flag is true regardless of size.

name
Name of order to be used as the root of the tarball delivered. This will also appear in the subject line of notifications, allowing
users to filter their email on this name if desired. This should be a single word using characters valid for filenames (a-zA-Z0-
9_.+-). Invalid characters will be replaced with underscores.

orderType
Type of order, "internal” or "public", affects permission to access "nonpublic" files

Returns a newly created jobld.

Possible faults:

1 - Invalid email syntax.

If the email does not follow the format of "name@somewhere".
2 - Files not found.

Some or all of the files requested were not in the archive Files table.
3 - Restricted Files.

The user was denied access to some or all of the files requested.

int newCart()

Create a new empty cart, returning a jobld. addToCart() can also create a cart if called with a null jobId, but this function allows
this to be done without adding a file to the cart.

removeFromCart(String[] File, int jobId)

Remove the selected file(s) from the cart
clearCart(int jobId)

Remove all the cart contents
setContactInfo(String email, String name, int jobId)

Store email address and an optional name for this user. This email address will receive the notification that the data are ready for
pickup.

int sendConfirmationEmail(int jobld, String url)
Send a confirmation email to verify email and confirm job. URL is the web address to receive the job code.
checkout(int jobId)

User indicates that data selections are done. Add order to queue for processing, but set state to "EmailPending"
int confirmEmail(int jobC ode)

job code confirms email, gets corresponding jobId, and moves job to "Ordered" state. Returns jobId

String[] getJobs(int userId)

Return a list showing the state of jobs owned by a single user

String[] getJobFileState(int jobId)
Return a detailed list of files in a given job showing status (name, size, onDisk)
String getJobState (jobId)

Returns status on the job, Building, Ordered, Queued, Processing, Retrieval Completed, Delivery Packaged or Order Completed,
and any sub status.

int getJobPriority(int jobld)
Get the current priority number

String[] dirList(String dirPath, String regex)

Get a directory listing starting at 'dirPath’. If given, apply a regular expression filter to the file names.

int dirListCount(String dirPath, String regex)

Get a count of the files that would match the corresponding dirlList command.

startRetrieval(String destDir, int jobNo, int priority)

Begin processing the cart associated with 'jobNo'. Regular users can set a lower priority than normal. Only privileged users can set
a "High" priority job. For external users, create an archive of files, uncompressed, since the objects in the Stornext are already
compressed. When done, the result is moved to the destDir and a notification is emailed, if contact information is available.
cancel O rder(int jobId)

Allow user to cancel their order. Set status to complete, leave jobFinishDate as NULL.

getDiskFile(String filename)

Supports the Immediate File Retrieval capability above. Gets a file from disk, if the file is on tape return an error but does NOT
Initiate a tape access.

preloadFiles(String dirPath, String fileRe gEx)

Request that the Stornext move files matching the given file pattern from tape onto buffer disk. This attempts to expedite later
retrievals by pre-caching files onto the Stornext disk buffer. You should only request files that you actually plan to use.

Administrative Functions

These functions support maintenance and administration.

TODO: flesh this out from the technical monitoring capabilities needed.

String[] listJobs(bool internalUser, status filter)

Retrieve a list of jobs, sorted by priority and order date. The list may be implemented a s list of job objects instead of strings. The
list will show sizes, priorities, status, and dates started, ordered, processing, and complete. Normally jobs that are completed will
not be in this list, but any combination of status, Building, EmailPending, Ordered, Processing or Completed can be specified. If this

is from an internal user, then originator contact information will be shown.

String[] partitionFreeSpace()

Reports on space available on the predefined delivery partitions. The internal work areas are also included in this report.
bool setJobPriority(int jobId, int newPriority)

Alter the job priority if this is a privileged user. Returns True on success

bool setRunStop(string "run" or "stop")

Set the retrieval server to running or stopped state. Incoming user requests when the retrieval status is "stop" will get a fault result
"Server is stopped".

Lower Level Functions (Archive Server)

These functions are available to the middle level API. These functions may interact directly with the Stornext SNAPI software and
command line interfaces.

Communications with the Archive Server is through the archive_interface table in the jobs database. The database to use is:

= adic_jobs for development
= ars for production

Details of usage can be found in the archive_interface table description
String archiveStatus()

Check on the the Archive Server system. This should indicate if the system is "running” or in "maintenance"” mode. File retrieval
requests will most likely be refused when not running,

Sample response:

<params>
<param>
<value><string>running</string></value>
</param>
</params>

struct fileStatus (String filePath) -- Version 2

Return file information including size, modification time, last access time and onDisk status. This information is also updated in the
Archive Database for this file when this method is called. If not too costly, medialD could also be returned, but this is not needed
for the first revision.

Sample fileStatus result:

<struct>

\ <member>

, <name>size</name>

: <value><i4>filesize</i4></value>
\ </member>

'

<member>
<name>modTime</name>
<value><dateTime.iso08601>YYYYMMDDTHH:MM:SS</dateTime.iso8601></value>
</member>
<member>
<name>lastAccessTime</name>
<value><dateTime.is08601>YYYYMMDDTHH:MM:SS</dateTime.iso08601></value>
</member>
<member>
<name>onDisk</name>
<value><boolean>1 or 0</boolean></value>
</member>
</struct>

Security Issues

If there are some files in the Stornext archive that should not be publicly accessible, then they should be placed in or below a
directory named "nonpublic" (all lowercase). Because data managers can move files in or out of these directories should their status
change, it is believed this is a sufficiently flexible mechanism that is easy to use.

The "nonpublic" directory can be anywhere in the path. For example, if the directory is:

Then everything from "/nonpublic/" and below is not shown to the public. Submitting this path to the directory listing function will
give a file or directory not found error, with possibly a suggestion that the closest available directory is "/a/b/c"

There is also a "private" security level, that internal users can see, but cannot access directly. Data managers must ask an
administrator to retrieve these files.

Do we need a "nobrowse" security level that hides files but allows them to be put into the cart if asked for by name?
Optimizations

Some possible design features to increase performance.

Segment Big Orders

Big muilti-tape orders can be hard to interrupt for system administration, or interleaving jobs. Large orders can be broken into 1-
tape-at-a-time chunks, allowing better responsiveness for an administrator that wants to pause the system, or manipulate job
positions or priorities. A tunable parameter can set a number of maxFilesThreshold (300 files will not overwhelm the command line
used for fsretrieve given the current database directory column size of varchar(256) and file size varchar(100)). Another tunable
parameter can set the upper maxRequestSizeThreshold, so 100 GB and larger orders will be segmented into smaller numbers of
files to get under, if possible, 100 GB per fsretrieval.

Aggregate Small Orders

Along with segmenting big orders, it may speed things up if small orders collected out of the queue to try and meet some tunable
parameters of minFilesGoal (250 files?) and minRequestSizeGoal (10 GB?). I'm calling these "goals" since not making the
minimums will not delay the orders, processing will proceed with what is queued.

Lower Priority on Subsequent Orders

For a user that already has entries pending in the queue, subsequent orders are set to a lower priority so that other users can get
prompt service. See the priority codes in Archive_Retrieval Server_Level 1_design#priority_table

Reshuffling requests by Tape

Fetching a tape has the most time overhead. A possible speed up will come from looking through the queued orders, identifying the
tapes that contain each file, and then requesting files that are on the same tape at once, even if they come from different orders. Not
all the orders need to be scanned, we can look through N files or M MB of data for tape IDs, whichever is less. Setting N and M
very large would be similar to scanning through all files requested for tape information.

Let the Stornext optimize retrievals

The Stornext system will gather files off one tape all together and in the right order if they are requested at the same time. It should
also be relatively harmless to ask for something that is already on disk, or re-request it. What if we request everything in the queue
at once, letting the Stornext pick the most efficient access pattern. Some sort of size limit would be needed.

Database Tables

Two databases are involved in this system. One is an Archive Database, which mainly tracks the state of files so that the Stornext
itself does not need to provide this information. The second is a Jobs Database, which will track data orders going to users and
provide summary information on Stornext usage.

files table

Files in the archive, stored in the Archive DB.

[Com | twe
|file_id ||int primary keyl
|dir_id ||int foreign key l
| file name ||Varchar ‘

|c0mpressed_size ”bigint

|tape_count ||t1ny1nt

|
|unc0mpressed_size||bigint ‘
|
|

|archjve_date ||datetime

The filename is a joined to the entry in the Directory table to produce a full path in the Stornext filesystem.

File Metadata columns

compressed_size

The file size in bytes. Files are archived in a compressed state
uncompressed_size

The expected uncompressed size of the archive file
archive_date

Timestamp that the file was added to the archive

dirs table

Directories are stored separate from files in the Directory table for efficiency and good database normalization. Note that this table
only contains directory entries which contain files. There are no directory entries that only contain subdirectories. Also, the path
entries in this table to NOT have a trailing '/' character.

dir_id ||int primary key

|d1r name Hvarchar

The dir_name field is not constrained to be unique, although it may be useful to have it unique.
active_jobs table
JobRecord table

Stored as ARS_JOB_RECORD in the database.

Information to track current orders of files, contact information, priorities, and status. This is stored in the Jobs DB.

|proc_start_date ||date (datetime processing started, fourth date)

|archive_ﬁ1ﬂsh_date||date (datetime tape archive retrievals finish, fifth date)
|proc_ﬁnish_date ||date (processing done, data moved to delivery and user notified, sixth date)

|pickup_date ||date (User used pickup URL, seventh date)

|de]ivery_expiration||date (date that this Job is considered completed or canceled, eighth date)

[Com | Ty |
id		1'nt unsigned auto_increment primary key
delivery_name		Varchar (user chosen deliverable root name)
order_id		Varchar unique key (YYMMDD order requested + 36 char random a]pha—numeric)
status_id		int unsigned foreign key
paused		int (boolean 1=true, O=false)
debug_me		int (boolean 1=true, O=false)
err_state_id ”ErrState foreign key		
priority_id		1'nt unsigned foreign key
[orig _priority_id] ”int unsigned foreign key		
contact_id ”int unsigned foreign key		
n0tify_ﬂag ”int (boolean 1=true, 0=false)		
order_type		Varchar ("internal" or "public")
size		ﬂoat (compressed size in MBytes)
uncomp_size ”ﬂoat (uncompressed size in MBytes)		
ﬁle_count		int (number of files requested in this order)
dest_d1'r		Varchar (Delivery Server directory, see delivery_partition table)
deliverable		Varchar ("tar", "dir", or "cache")
job_start_date		date (item added to cart, first date)
order_date ”date (datetime order requested, second date)		
queued_date		date (datetime email verified by user, third date)

|

|

|

|

|

|

|[compression] ||Varchar (optional compression type "gzip", 'bz2"...)

|[description] | varchar (optional user notes to describe order) |

|restart_url Hvarchar (optional link back to cart interface) ‘
| GORM ||hasMany(dataFiles:DataFile, retrievals:Retrieval) |

Columns in [square brackets] can probably be left out of the first version of this software.

priority_id
is the effective priority of the job. This will differ from origPriorityld if an administrator changed the priority or if the Lower
Priority on Subequent Orders optimization has modified the priority.

orig_priority_id
is the original priority of the job when created.

notify_flag
is used to turn off email notifications, typically when the requestor is a program.

deliverable
If this is "tar", which is always used for "public" order_types, then files are tarred into a directory named after the order_id.
This can be "dir" for an internal user, in which case the 'dest_dir' and 'delivery_name' are used to determine destination. If
this is "cache", also for internal users, then files are left on the Stornext disk buffer, it is assumed that the requester is internal
and has a way to access files directly from this location.

dest_dir
is an NFS mounted filesystem (NetApp) location in the delivery_partition table. This value is copied from the
delivery_partition.path column and is not a foreign key id. The reason this is not a foreign key is to allow us to change values
in the delivery_partition table without altering the job history on partitions used.

delivery_name
is used in the subject line of notificaiton emails, allowing the user to filter emails if they desire. For internal orders, this will be
used as a directory name to receive files and should be a valid file path specification

Some possible statistics that can be calculated from this table:

= volumeTotal (in GB)

= volToday (in GB)

= volThisWeek

= volThisMonth

= cartsStarted

= ordersPlaced

= filesRequested

» filesOnDisk (when requested)

= priority3Count

= priority2Count

= priorityl Count

= internalOrders

= ordersCanceled

= ordersCompleted

= maxJobQueueTotal

= maxJobQueueWeek

= maxJobQueueMonth

= timeToOrder (seconds from start of building to Ordered on average)
= timeInQueue (seconds)

= timeInQueueDiskWait (seconds waiting for disk)

status table

Job status states used by the status_id field in the active_jobs table and the job_history table

‘Column” Type ‘

‘id Hint unsigned auto_increment primary key‘

lname Hvarchar unique |

Job Status States

These are sequential states, so normally a job in any state has also passed through all the previous lower numbered states in order.
An exception is when jobs are canceled and may thus skip to the Completed state. If substates are implemented, then these skips
can be detected.

1 Building
The user is building their order. A non-empty list of files (shopping cart) has been started, this is the first state a job enters
when it is created. Synonyms: Shopping, Pending, session Started.

2 Ordered (Email verification is pending)
An email was sent to the address entered, but the user has not yet clicked the enclosed link to verify that the email is valid.
This verifies the email works and has the email recipient confirm that the order should begin proccessing. When Ordered, we
verify inventory by provider, check permissions, and build retrieval records.

3 Queued (Email has been Verified, Waiting to be processed)
Data selections are complete, the user has requested this set of files and the job is waiting for processing.
Substates:

= Waiting for space on partition, n MB available - order is held up waiting for space on a destination disk.
= Waiting for manual intervention - order was too big, user has asked for a data manager to complete the order.
= Held by administrator - an adminstrator has put this job on hold.

4 Processing (Rename 'Retrieving'?)
Retrieving data files from tape, the Order Manager processing this phase.
Substates:

= Tape n of N - (for large orders) break big orders up and submit file requests by tape ID.

5 Retrieval Completed
Tape retrieval is complete. Packaging, clean-up, moving to delivery. The Delivery Processor is working on the data.

Substates:

= Preparing files - tar or copy in progress
= Data transferred - delivery package moved to pick-up area

? Should there be a 'Packing’ status?

6 Delivery Packaged
A delivery object is ready for pickup at the pick-up point (delivery directory) specified.
Substates:

= Awaiting pickup - the user has been notified
= Download attempted - the download URL was used (don't know if it was successful though)

7 Order Completed
Orders in this state should be in the Job History table, and may be purgeable.
Substates:

= User released storage - the user indicated they were done with the files.
= Delivery window closed - the delivery files were automatically deleted after the end of the pick-up time window was

passed.

User canceled order - the user canceled the order while waiting to be processed.

User canceled processing - the user canceled the order after processing began.

Administrator canceled order - an administrator canceled the order while waiting to be processed.
Administrator canceled processing - an administrator canceled the order after processing began.

priority table

Job Priorities. We will start off with a simple priority system, with jobs being created with medium priority by default. High priority
jobs are completed before Medium jobs if resources are available. Low priority jobs run when there are no other jobs waiting.
Jobs at the same priority level are taken in the order queued.

If the Lower Priority on Subsequent Orders optimization is in effect, then the first of the low priority jobs for a given user will be
elevated to medium (going to the end of the medium priority queue) every time a new job is needed. Priorities 1 and 5 are not
optimized, so the administrator has the final say by using one of these.

|Column“ Type l

|id Hint unsigned auto_increment primary keyl

|name Hvarchar unique l

Priority Numbering:

Highest (Administrator only can set this)
High (internal user option)

Medium (internal and external users)
Low (external users subsequent orders)
Lowest (Administrator set)

iAW E

contact table

For jobs that will take some time, the initiating user will submit an email address and then receive a notice when the order is ready
for pick-up.

Column Type
|id Hint unsigned auto_increment primary key l
| email Hvarchar ‘
|1ast_used Hdate (for clearing out old external contacts) ‘
| [name] Hvarchar ‘
|[interna1] Hboolean (true if NGDC internal user) ‘
| [email verified] Hboolean (true if confirmation email not needed. for internal users only)‘
|[password] Hvarchar (for internal users only) l

next_jobs table

A bookkeepping table to maintain the order of the next job to process. To be replaced by a RetrievalQEntry and DeliveryQEntry
table, both based on a QueuedThing.groovy base class.

|ColumnH Type ‘

|id Hint unsigned auto_increment primary key‘

| job_id Hint unsigned unique foreign key ‘

provider table

A table listing the different data providers, either NGDC or NEAAT.

|Column” Type ‘

|id Hint unsigned auto_increment primary key‘

|name Hvarchar ‘

retrieval table

A retrieval_id generation table to associate retrievals to a job_record.

Column Type
| | |

|id Hint unsigned auto_increment primary key‘

|procStartDate Htjmestamp ‘

|procFinjshDatthimestamp ‘

provider Provider foreign key

|thread Hint ‘
hasMany(dataFiles:DataFile)
belongsTo(job:JobRecord)

GORM

Usually there is one retrieval ID per JobRecord, but since a job could have more than one retrieval (e.g. batches for a large number
of files), there may be multiple entries of the same job_record_id value in this table, each with its own unique (retrieval) ID.

This class keeps track of active retrievals. A retrieval can be in one of three states:

= queued - waiting to be retrieved (procStartDate == null, thread == null)
= locked - actively being retrieved (procStartDate != null, thread != null, procFinishdate == null
= done - processing completed (procFinishDate != null)

retrieval_and_file table

A junction table to tie files to a FS retrieval. This table and the archive_interface table are used to communicate retrieval requests to
the Archive Server. This table contains retrieval file data, the archive process only read this table.

[Colm | Ty |
|id ||int unsigned auto_increment primary key l

unsigned foreign

The retrieval_id can group files if more than one request should be made for a job, for example, 10,000 files would be 10,000
lines in this table, all with the same jobId, but 5 retrievallds of 2,000 files each. In the future, we may know the media id, and can
segment the retrieval based on which tapes the files are stored. Since there may be a need for more than one retrieval_id per
source_request entry, the source_request_id is not used to group the files of a retrieval. Also, to avoid duplications of retrieval_id,
the database should generate the retrieval id as a sequence of serial numbers. See the retrieval table to match retrieval IDs to
source_request IDs.

delivery_partition table

Stores known delivery areas, these are set up in advance so that the delivery server has write permission to these areas. These may
be NFS mounts to the Retrieval Server.

|order_ﬁle_]jmit Hint (0=no limit)
|order_size_]jmit Hbigint (MBytes)

|description Hvarchar

| Column H Type ‘
|id Hint unsigned auto_increment primary key ‘
|path Hvarchar ‘
|work_path Hvarchar ‘
|save_space “int (MBytes) l
|usage_c0de Henum (http//dev.mysql.com/doc/refman/5.1/en/enum.html) (‘pub_web', 'in_tmp', 'in_part’) l
|effective_date Hdate (this partition became active, ignore if date is in the future) l
|expiration_date Hdate (this partition became inactive. This is a current or "latest" entry if this field is null) ‘
|default_part Hint (boolean 1=true, O=false) ‘
|chmod_options Hvarchar (used to set access permissions after moving results from work_path to path) ‘

|

|

|

|

| access_token Hvarchar

int (boolean 1=true, O=false, Enclose deliveries in OrderID directories. This property should always be true

[order_id_directory] for partitions that have defaultPart=true)

int (if this is a replacement, indicates entry this is a replaces. Can be used with effective_date to implement

[replaces_id] automatic replacements)

The path and work_path entries are absolute paths to directories. They should start with a "/" and should not end with a "/".

The save_space parameter preserves some disk space in MegaBytes, keeping the Retrieval Server from using all of the capacity
at this destination.

__

For example, if the destination is /nfs/data/mgg/, the saveSpace parameter is 100, and the 'df (disk free space system command)
shows 500 MB available, then the Retrieval Server will act as if 400 MB are available for use. Orders of 400 MB and larger
destined for this area will be held as "Ordered: Waiting for delivery disk /nfs/data/mgg"

The usage_code meanings are:

pub_web

Public Web/FTP access
in_tmp

Internal Temporary space
in_part

Internal Partiton

default_part marks this record as a default partition, there should be only one default partition per usage_code.
clean_up_policy table

If the Archive Retrieval Server ends up cleaning up files in the delivery area, then here are some clean-up policy names and
meanings. This table is not needed if the standard file aging and deleting already in place is acceptable.

|ColumnH Type ‘

|id Hint unsigned auto_increment primary key‘

|name Hvarchar ‘

clean_up_policy Values

1 Keep
Don't delete
2 Keep until
Delete after a separately given date is reached
3 Delete AfterAccess
Delete after a separately given delay is reached after the last access of the deliverable. The delay gives time for the download
to complete.
4 Delete
Delete the deliverable immediately

system_params table

The Archive Retrieval Server is configured and controlled by a system parameters table. This would be a table of name-value pairs.

|Column” Type ‘

|id Hint unsigned auto_increment primary key‘

|name Hvarchar l

|Value Hvarchar l

Some possible entries (values shown are current system defaults):

= sysState=running (or paused)

= publicSizeLimitMb=2000 (orders larger than this many MB are sent to a data manager)

= publicFilel.imit=4000 (orders larger than this many files are sent to a data manager)

= internalSizeLimitMb=2000000 (orders larger than this are set to paused)

= internalFileLimit=8000 (orders larger than this many files are set to paused)

= batchFileLimit=1000 (Limit the number of files we scan for tapeIDs when optimizing tape access on a singe large order, see

Reshuffling requests by Tape)

batchMbLimit=2048 (Limit the MByte size when scanning for tapelDs for single large order submission, see Reshuffling
requests by Tape)

statusEmail=Ken. Tanaka@noaa.gov (administrator email address)

notifyFromEmail=K en. Tanaka@noaa.gov (notifications come from this email address)

notificationL.evel=debug (choose one of: debug, info, warn, error or none)

omldleSleep=60 (Number of seconds the Order Manager sleeps between cycles when idle)

omShortDelay=10 (Number of seconds in a short delay used by the Order Manager)

dpldleSleep=60 (Number of seconds the Delivery Processor sleeps between cycles when idle)
statusUrl=http/intranet.ngdc.noaa.gov/arsStatus/jobStatus/show (URL for the status/pickup page, embedded in notification
emails)

pickupWindowDays=4 (Number of days the user has to attempt a download on the completed order)
doarchivePrefixCutwnloadWindowDays=2 (Number of additional days the user has to complete the download when they
pick up the order)

diskReserveDefault=200 (Default disk space to reserve if not specified in the delivery partion table)
jobFileHistoryDays=365 (Number of days to keep file data for an order. Once purged, the order cannot be resurrected by
changing its status back to "Queued")

archivePrefixCut=/stornext/ngdc/archive/ (Common portion of filepath prefix to remove from retrievals (should end ina /))
deliveryPrefixCut=/stornext (Common portion of filepath prefix to remove from delivery hierarchy (should not include a
trailing /))

Maybe add?

omPriorityPolicy or dpPriorityPolicy as one of

= Interleave

= InterleaveMedium

= FIFO (straight order received within priority)
extraDownload TimePerGB=5 hours, so a 10 GB download gets an extra 50 hours added to their download window.
dp/omCycleSkip=0 # of frequency cycles to skip before really doing anything, used to throttle back quartz processing
activity.

retrieval_stats table

Retrieval statistics table. This would be a table of name-value pairs.

‘ Column H Type ‘
‘id H:int unsigned auto_increment primary key‘
‘name Hvarchar ‘
lvalue Hvarchar |

‘last_reset“timestamp |

Some possible statistics:

partitionXWaitCount

systemRunCycles (count of stop to run transitions)

errorCount

specialOrderSizeCount (number of orders needing data manager intervention due to exceeding size limit)

Flowcharts

Some flowcharts are available in the EDS project of SubVersion under

https://svn.ngdc.noaa.gov/viewvc/eds/adic/retrievalserver/trunk/src/site/resources/images/

These figures were created as OpenOffice Draw documents and exported to PNG versions for this wiki

Archive Retrieval Service Architecture

This is an overview of the web service architecture, and the expected protocol connections.

Archive Retrieval Service Architecture - 23 May 2011
Cart (Public User Interface) Retrieval Server (internal Interface) ~ Archive Server

Browse

Order support
(archiveRetrievalServer)
Browse Inernal access -
files (ver. 2) < hcimin ool

= Reporting irfo
= Archive Server interface

_‘-\""-h- REST request

Legend
Web appication(s) CEsaee > - o
cation(s
.I‘I":mlm[mnﬂ. CGl) - - — P Read-Only DB conmation
Daabass
............................. (MySOL

o Read-Wite DE conmetion

Software Components

This is a compact outline of software package responsibilities (functionality) and inter-dependencies. It's intended to be a quick
reference to aid in understanding what the components are doing and how they interact. I also note filesystem and database
dependencies. ("CRUD", when used below, is an acronym to Create, Retrieve, Update and Delete database records.)

Retrieval Server (archiveRetrievalServer)

= Internal Web Service
= implemented in Grails

= Database connection by GORM
= Uses adic_jobs database
= Uses archive2 database

Functionality provided by REST
= Add a full order to active_jobs table in one step
= Create a new job
= Add files to job
= Validation and checks
= Validates filename syntax (not needed if DB name entries are good)
= Checks filenames against Archive DB inventory
= Checks filepaths for "nonpublic" and "private" access (hold violating jobs)
= Pauses or rejects (based on acceptanceCode) jobs that are too big (Client software can then direct user to a
data manager for manual intervention)
= Creates retrieval lists for Archive Service
= Organizes jobs by priority, date and number of active jobs submitted by the same user (email address)
= Interacts with Archive Service to retrieve files from tape onto disk buffer
= Tracks and updates job retrieval status
= Marks completed retrievals by setting job state to ' Retrieval Completed'
= Retrieve job information by ID
= Retrieve job information by Order ID
= Retrieve job files by ID
= Retrieve job files by Order ID
= Set the substatus of a job (by ID)
= Set the job to "Download attempted" (by ID) also extends deliveryExpiration by downloadWindowDays time
= Provide file and subdirectory listings for a directory name
Interactions with other components
= arsStatus needs this to be running to provide job information and record download attempt
= adicOrderManager needs this to provide jobs to process in' Queued' state

Order Manager (archiveOrderManager)

Sub-process of archiveRetrievalServer
= implemented as a Grails Quartz thread
= handles the quicker schedule-based maintenance tasks
Database connection by GORM
= Uses adic_jobs database
= Uses archive2 database
Functionality
= Frees resources for canceled jobs
= Calculates retrieval statistics
= Emails administrator any warning conditions or jobs paused due to size limit violations
= Performs automated DB table maintenance
= Performs automated filesystem maintenance
Interactions with other components
= Depends on archiveRetrievalServer for jobs to process, works on jobs in ' Queued' state
= DeliveryProcessor needs this to provide jobs to process in' Retrieval Completed' state
= Depends on ars to set system sysState to one of 'running' or 'paused'

Delivery Processor (archiveDeliveryProcessor)

Sub-process of archiveRetrievalServer
= implemented as a Grails Quartz thread
= handles the longer running tar tasks
Database connection by GORM
= Uses adic_jobs database
Needs access to shared files systems (NFS, netApp) and Stornext filesystem

= Functionality
= Verifies disk space available before processing jobs
= Files for external customers are tarred to the FTP location
= Files for internal customers are moved to their chosen NFS location
= User is emailed (unless notifyFlag is false) that their job is ready. For external users, a link to the Job Status page is
included.
= Marks completed packaging by setting job state to ' Delivery Packaged' and substatus of ' Awaiting pickup'
= [nteractions with other components
= Depends on OrderManager for jobs to process, works on jobs in' Retrieval Completed' state
= Depends on adicRsAdmin to set system sysState to one of 'running' or 'paused’

Administrator (archiveRsAdmin)

= Internal Web Service, part of the archiveRetrievalServer
= implemented with Grails
= Database connection by Grails GORM
= Uses adic_jobs database
= Uses archive2 database
= Functionality
= Allows administrator to inspect and change system operating paramters
= Shows system health
= Allows admin to view and edit job priority, and other job info
= Allows admin to cancel a job
= Allows admin to CRUD delivery partitions
= Allows admin to CRUD other admins accounts
= Allows admin to pause or shutdown retrieval activity (by setting adic_jobs.system_params table value for sysState)
= Performs manual DB table maintenance
= Performs manual filesystem maintenance
= Interactions with other components
= OrderManager watches for sysState changes, which can be set by this program
= DeliveryProcessor watches for sysState changes, which can be set by this program

Job Status/Pickup (arsStatus)

= External Web Service
= implemented with Grails
= Functionality
= Allows users to view their job status
= Allows users to download their job when ready
= Records user download attempt
= Allows user to cancel/delete job prematurely
= Allows user to see their other jobs

Order Manager Description

The Order Manager is a constantly running process. It reads the ActiveJob table and interacts with the Archive Service to complete
the current job as far as getting files from tape to disk. Once all files for a request are on disk, the job status is updated and the
Delivery Processor is expected to take over on packaging and notifying the requestor.

If there is no current job, then the active_jobs table is consulted to select the next job based on priority and date. After selecting a
job, then priorities for the next job may be updated. Loads the retrieval_and_file table and passes a Retrievalld number to the
Archive Service. This process will also re-request interrupted jobs.

This process also performs table housekeeping. Completed jobs have their status updated and then are moved from the active_jobs
table to the job_history table. This process will also clean old rows out of the retrieval _and_file table.

Delivery Processor Description

The Delivery Processor is a constantly running process that completes the current job once all files are on disk. Files are packaged
if needed and moved to the delivery destination. The requester is notified and the Archive Service is signaled when the files are no
longer needed by the retrieval service.

Shopping Cart Function

Here is an initial draft of the Shopping Cart function flowchart, showing different API level interactions:

Flowchart of Standard shopping cart interactions:

Shopping Retrieval > T <

Cart Server Jobs DB Archive DB
(High Level) (Mid Level)

e Selectfiles: —ﬁ'—"“‘"‘ K to dat
. E H Ept Up 1o (=] —_
J o by'A%lClrlteFfar.e

- Fielis :

:] File i j :
| Renderpage g S Cart file list :
with files : i :

.................. create cart if needed

| {Addselected | _umocanfile >
to car : 2

Verify files exist,
check permissions

cart 1D Insertfiles

*EEEM e mh
........ e Cart file list :
........ o, Catfiels

¢ Render
cart page

Delete car files >

Deletefile >
Select email >
email status

f::r_._.-—-—-—'— To nenmlzTe. E-E:EE:TEF'ElDE : I i atatime
-‘_ : : request)

i : ¢ File retriev
: ‘\\‘_ i requestiD : - :

sessnebanassnes, JODCoOE Resuft m : :

Enter email _

verfication : {m—‘i

codel | getdoh State(jphid) g,

status/pickup Job status result ' Job status
REES : :
............... ; : I :
E W 1 select job files :.

Job files

PP ——————

Job files result

cancelomerjobid)
> et satusto canceled >

Next Actions

Ken

= Continue to flesh out Mid and Low API calls
= Write Java-to-Java XML RPC test
= Verify data scaling, 100, 1000, 10000 files returned
= [nJava server to Java client, this worked well on the same system (localhost) using a Tomcat Servlet,
1,000,000 filenames took 3s to transfer. 3M filenames took 11s. Described the code in the Apache wiki:
httpz//wiki.apache.org/ws/XmIRpcExampleStringArray
= if there's time try this in Ruby-to-Ruby and Java-to-Ruby.
= Start with a Google on "xml rpc” (http//www.google.comvsearch?q=xml++rpc&ie=utf-8&oe=utf-
8&aq=t&rls=org.mozilla:en-US official&client=firefox-a)
= or Google on "xml-rpc java example tutorial" (http//www.google.com/search?q=xml-rpc-+java-+tutorial&ie=utf-
8&oe=utf-8&aq=t&rls=org.mozilla:en- US :official&client=firefox-a)
= Build DB schema
= have the software completed for the all of the Cart Function Calls by end of August. We'll have a check-in mtg mid August.
= Setup adic_jobs database to store job information as part of the function calls.
= Begin designing a monitoring interface
= Milestones for coding
= Architecture Overview - Done
= Implement Database Schema - Done
= Evaluate iBATIS 2 for database access - Done, iBATIS will be acceptable
» Primary software packages
= Administration (Maintenance) Interface - In progress
Order Support Interface - In progress
Cart order Interface (test page) - In progress
= T,0ad Cart (submit full order) - done
= Status/Pickup page - done
Order Manager service - done
Delivery Processor service - done
= Browse Support Interface (ver 2)
= NGDC look and feel plugin for Grails code (Jordan has a plugin) - Done
= Security plugin using Crowd for Grails - Done
= See CrowdedSpringSecurity and Atlassian Crowd Tips
= DB connection pooling
= See google "Grails connection pool"
= http/sacharya.convgrails-dbcp-stale-connections/
= See John C's links
= Dbcplnfo
= FailoverJ]DBCConnectionPool
= Redesign Database schema
= Talk to John L for design suggestions - Done
= Use NamedThing pattern - Done
= Consolidate code into Grails, using the Quartz plugin (http/grails.org/plugin/quartz) for scheduling

Tom

= Check into SNAPI v 2.0.1 for StoreNext 3.1.2
= Can it handle multiple files? API implies single file for FileRetrieve, command line fsretrieve says "Separate multiple file
names with a space."
= Document Archive tables "File" and "Directory"

Dan

= Ask data managers about workability of 'non_public' directory to hide data.

See Also

Web Access to ADIC Planning Page
Archive Retrieval Server Development Notes

» REST interface to the Archive Server
= Archive Retrieval Server Test Plan

Previous, now obsolete, ADIC Level 0 design intranet wiki page
Archive System at NGDC, see the ADIC section
ADIC Stornext documents online (http//stornextnotes.blogspot.com/2008/06/pdfs.html)

ADIC-API Project Gantt chart (http://intranet.ngdc.noaa.gov/Archive/adic-api/adic-api-chart.html) and ADIC-API Project Task
list (http//intranet.ngdc.noaa.gov/Archive/adic-api/adic-api-tasks.html)

Retrieved from "http//intranet.ngdc.noaa.gov/wiki/index.php?title=Archive_Retrieval_Server_Level_1_design"

= This page was last modified on 18 November 2011, at 15:39.

